четверг, 14 марта 2013 г.

Задачи с решениями на проценты, сплавы и смеси (B13. Математика)

Условие задачи: Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?
Решение.
Стоимость четырех рубашек составляет 92% стоимости куртки. Значит, стоимость одной рубашки составляет 23% стоимости куртки. Поэтому стоимость пяти рубашек составляет 115% стоимости куртки. Это превышает стоимость куртки на 15%.
Ответ: 15.

Условие задачи: В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
Решение.
Обозначим первоначальную стоимость акций за 1. Пусть в понедельник акции компании подорожали на , и их стоимость стала составлять . Во вторник акции подешевели на , и их стоимость стала составлять . В результате они стали стоить на дешевле, чем при открытии торгов в понедельник, то есть 0,96. Таким образом,

.
Ответ: 20.

Условие задачи: В 2008 году в городском квартале проживало человек. В 2009 году, в результате строительства новых домов, число жителей выросло на , а в 2010 году на по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?
Решение.
В 2009 году число жителей стало человек, а в 2010 году число жителей стало человек.

Ответ: 47088.

Условие задачи: Митя, Антон, Гоша и Борис учредили компанию с уставным капиталом 200 000 рублей. Митя внес 14% уставного капитала, Антон – 42 000 рублей, Гоша – 12% уставного капитала, а оставшуюся часть капитала внес Борис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1 000 000 рублей причитается Борису? Ответ дайте в рублях.
Решение.
Антон внес уставного капитала. Тогда Борис внес уставного капитала. Таким образом, от прибыли 1000000 рублей Борису причитается рублей.

Ответ: 530000.

Условие задачи: В сосуд, содержащий 5 литров 12–процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?
Решение.
Концентрация раствора равна

.
Объем вещества в исходном растворе равен литра. При добавлении 7 литров воды общий объем раствора увеличится, а объем растворенного вещества оста нется прежним. Таким образом, концентрация полученного раствора равна:
.
Ответ: 5.

Условие задачи: Смешали 4 литра 15–процентного водного раствора некоторого вещества с 6 литрами 25–процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Решение.
Концентрация раствора равна . Таким образом, концентрация получившегося раствора равна:

Ответ: 21.

Условие задачи: Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?
Решение.
Виноград содержит 10% питательного вещества, а изюм — 95%. Поэтому 20 кг изюма содержат кг питательного вещества. Таким образом, для получения 20 килограммов изюма требуется кг винограда.

Ответ: 190.

Условие задачи: Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?
Решение.
Пусть масса 30-процентного раствора кислоты – кг, а масса 60-процентного – . Если смешать 30-процентный и 60-процентный растворы кислоты и добавить кг чистой воды, получится 36-процентный раствор кислоты: . Если бы вместо 10 кг воды добавили кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты: . Решим полученную систему уравнений:

Ответ: 60.

Условие задачи: Первый сплав содержит 10% меди, второй – 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Решение.
Пусть масса первого сплава кг, а масса второго – кг, масса третьего сплава – кг. Первый сплав содержит 10% меди, второй – 40% меди, третий сплав – 30% меди. Тогда:


Ответ: 9.

Условие задачи: Смешали некоторое количество 15–процентного раствора некоторого вещества с таким же количеством 19–процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Решение.
Концентрация раствора равна . Пусть объем получившегося раствора литров. Таким образом, концентрация полученного раствора равна:

Ответ: 17.

Условие задачи: Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20 000 рублей, через два года был продан за 15 842 рублей.
Решение.
Пусть цена холодильника ежегодно снижалась на процентов в год. Тогда за два года она снизилась на , о ткуда имеем:

Ответ: 11.

Условие задачи: Имеется два сплава. Первый сплав содержит 10% никеля, второй – 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:



Таким образом, первый сплав легче второго на 100 килограммов.
Ответ: 100.

Условие задачи: Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?
Решение.
Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%, то есть зарплата мужа составляет 67% дохода семьи. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%, то есть 2/3 стипендии составляют 4% д� �хода семьи, а вся стипендия дочери составляет 6% дохода семьи. Таким образом, доход жены составляет 100% − 67% − 6% = 27%










дохода семьи.
Ответ: 27.

Условие задачи: Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Решение.
Пусть концентрация первого раствора кислоты – , а концентрация второго – . Если смешать эти растворы кислоты, то получится раствор, содержащий 68% кислоты: . Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты: . Решим полученную систему уравнений:



Поэтому Ответ: 18.

Комментариев нет:

Отправить комментарий